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Weeks 3-4: Intro to Game Theory 

I. The Hard Case: When Strategy Matters 
A. You can go surprisingly far with general equilibrium theory, but 

ultimately many people find it unsatisfying.  In the real world, people 
frequently stand in between the one-agent and the near-infinite-
agent poles.   

B. Even when people start out in the near-infinite-agent case, they 
often ex post end up interacting with a few people. 
1. Ex: Marriage market 

C. Game theory tries to analyze situations where strategy does matter.  
It generally ends up with less determinate answers than GE, but is 
often arguably more realistic.  ("I'd rather be vaguely right than 
clearly wrong.") 

II. Extensive and Normal Forms 
A. Standard consumer choice provides the basic building blocks: 

game theory retains the standard assumption that people maximize 
utility functions.  Slight change: Game theorists often talk about 
"payoffs" instead of utility.  The concept is the same: Given a 
choice of payoffs, agents pick the largest. 
1. Payoffs are usually interpreted as von Neumann-

Morgenstern utilities to sidestep issues of risk aversion. 
B. Any game can be represented in two different ways: extensive form 

and normal form. 
C. Extensive forms display every possible course of game events, turn 

by turn.  They show how behavior branches out from "choice 
nodes," showing payoffs at the end of each branch as it ends.  For 
this reason, extensive forms are often called "decision trees." 

D. Simple example: Your career game tree.  At each node you can 
keep going to school, or get a job and get your payout. 

E. More interesting example: The French Connection subway game.  
Criminal decides whether to get on or off the subway; then Popeye 
decides whether to get on or off.  From the first node, the tree 
spreads out into two branches; then each of those branches 
spreads out to two further branches; then the game ends.  Payoffs 
for {Criminal, Popeye}: (on, on)=(0,10); (on, off)=(10,0); (off, 
on)=(10,0); (off,off)=(0,10). 

F. Complications: 
1. Nature as a random player. 
2. Information sets: simultaneous moves are equivalent to 

sequential moves with uncertainty. 



3. If you learn something before you decide, node representing 
what is learned must precede node where decision is taken. 

G. Normal forms (aka "strategic forms"), in contrast, display a 
complete grid of strategy profiles and payoffs.  The grid has one 
dimension per player. 
1. Important: Strategy profiles often contain irrelevant 

information about what you would have done in situations 
that did not in fact arise. 

H. Normal form of your 1-player career game: 
Drop out before H.S. Finish H.S., stop Finish B.A., stop Finish Ph.D., 

stop 
Finish 2 Ph.D.s, stop 

10 15 20 30 0 

I. Normal form of the French Connection Game: 

                           Popeye 

 
Criminal 

 On Off 

On 0,10 10,0 

Off 10,0 0,10 

J. Example from Kreps: Player 1 chooses A or D.  If D, game ends.  If 

A, then player 2 chooses  or .  If , game ends.  If , player 1 
chooses a or d, and either way, the game ends. 

K. Normal form: 

   

Aa 3,1 4,3 

Ad 2,3 4,3 

Da 1,2 1,2 

Dd 1,2 1,2 

L. Challenge: Write down the extensive form. 
III. Strictly and Weakly Dominant Strategies 

A. So what does game theory claim people do?  It begins with some 
relatively weak assumptions, then gradually strengthens them until 
a plausible answer emerges. 

B. Weakest assumption: People do not play strictly dominated 
strategies.  If there is a strategy that is strictly worse for you no 
matter what your opponent does, you do not play it.  If elimination 
of strictly dominated strategies leaves you with a single equilibrium, 
the game is dominance solvable. 

C. Classic example: Prisoners' Dilemma. 
D. If all players think this way, you can extend this idea to successive 

strict dominance.  If your opponent would never play a strategy, you 
can cross out that row or column.  This may in turn imply that some 
more of your strategies are strictly dominated, and so on. 
1. Fun fact: Order of iteration does not matter. 

E. A dominance solvable normal form from Kreps: 

 t1 t2 t3 

s1 4,3 2,7 0,4 

s2 5,5 5,-1 -4,-2 

 



F. Further refinement: If probabilistic combination of strategies strictly 
dominates another for any probability distribution, that too may be 
eliminated.  Then this normal form from Kreps becomes dominance 
solvable: 

 t1 t2 t3 

s1 4,10 3,0 1,3 

s2 0,0 2,10 10,3 

G. It may happen that one strategy is sometimes strictly worse and 
never strictly better than another.  Using the criterion of weak 
dominance, such strategies may also be eliminated.  Unfortunately, 
with weak dominance, order of iteration may matter. 

IV. Backwards Induction 
A. In any game perfect information, each node marks the beginning of 

what can be seen as another game of perfect information.   
B. Question: What happens if we apply the procedure of "backwards 

induction," i.e., repeatedly apply strict dominance to these 
"subgames"? 

C. Intuition: Systematically reason "If we get to this point in the game, 
no one would even do such-and-such, so we can erase that part of 
the tree." 

D. Modest Answer: We can eliminate more possibilities than before.  
1. Consider extensive and normal forms from Kreps (Figure 

12.5). 

 
E. Immodest Answer: Any finite game of complete and perfect 

information without ties becomes dominance solvable. 
1. Chess example 

F. Ex: The Centipede game (Figure 12.6) 



 
V. Pure Strategy Nash Equilibrium 

A. You can only get so far with strict dominance-type reasoning.  
Backwards induction seems impressive at first, but it only works for 
finite games of perfect and complete information.  Very few 
interesting situations fit that description. 

B. This leads us to a very different equilibrium concept, the pure 
strategy Nash equilibrium.  A set of player strategies is a PSNE if 
and only if NO player could do strictly better by changing strategies, 
holding all other players' strategies fixed. 
1. Imagine asking players one-by-one if they would like to do 

something different.  If ALL of them answer no, you have a 
PSNE. 

2. From the definition, it should be obvious that a game can 
have multiple PSNE or zero PSNE. 

C. Example #1.  Find the PSNE.  How does this differ from strict 
dominance? 

  Player 2 

P
la

y
e

r 

1
 

 Left Right 

Up 15,10 8,15 

Down 10,7 6,8 

D. Example #2:  Find the PSNE.  How does this differ from strict 
dominance? 

  Player 2 

P
la

y
e

r 

1
 

 Left Right 

Up 10,10 0,15 

Down 15,0 -5,-5 

E. Example #3: Note the absence of any PSNE. 



  Player 2 

P
la

y
e

r 

1
 

 Left Right 

Up 10,0 0,10 

Down 0,10 10,0 

F. The PSNE concept is probably the most used in game theory and 
modern economics generally.  It is somewhat paradoxical, 
however, because it seems to assume away strategic interaction, 
precisely what game theory was intended to address!  A more 
strategic player might think "I'm not going to switch just because I 
would be better off holding my opponent's action constant.  Maybe 
he'll respond in a way that makes me wish I hadn't changed in the 
first place." 

VI. Mixed Strategy Nash Equilibrium 
A. Talking about "pure strategy" NE strongly suggests a contrasting 

concept of "mixed strategy" NE.  Instead of just asking whether any 
player has an incentive to change strategies, you could ask 
whether any player has an incentive to change his probability of 
playing various strategies. 

B. How do you solve for MSNE?  Each player has to play a mixture 
that leaves all other players indifferent. 

C. Ex: Return to the game where: 

  Player 2 

P
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y
e

r 

1
 

 Left Right 

Up 8,10 1,15 

Down 12,0 -9,-5 

D. When is player 2 indifferent between playing Left and playing 

Right?  Let player 1's probability of playing Up be , and Down be 

(1-).  Then player 2 is indifferent so long 

as:      15151010 , which simplifies to: =.5. 

E. When is player 1 indifferent between playing Up and playing Down?  

Let player 2's probability of playing Left be , and Right be (1-).  

Then player 1 is indifferent so long as:      1912118 , 

which simplifies to =5/7. 

F. So there is a MSNE of (,)=(.5, 5/7).  When player 1 plays Up with 
probability .5, and player 2 players Left with probability 5/7, neither 
could do better by changing their mix.  (They wouldn't do worse 
either, admittedly!). 

G. Many people find the MSNE bizarre, but I maintain the opposite.  
The MSNE concept brilliantly accommodates the strategic 
complexity of real-world small-numbers interaction.  Think of it this 
way: You make your opponents indifferent in order to eliminate 
behavioral patterns they could exploit. 
1. Ex: Sports.  You don't do the same thing all of the time 

because opponents will notice the pattern and play the most 
effective response.  A predictable player is easy to beat.  In 



racquetball, for example, you play a mix of hard and soft 
serves, aiming at different locations on the court. 

2. Ex: Strategy games.  If you always attack the same place, 
your opponent will put all of his defensive strength there.  In 
Diplomacy, for example, you randomize your attacks 
because a fully anticipated attack is easy to repel. 

3. Ex: Rock, Paper, Scissors.  You randomize to avoid being a 
sucker.  Of course, if you play against someone who doesn't 
randomize, you don't want to randomize either; but maybe 
they are just tricking you into thinking they don't randomize! 

4. Ex: Bargaining.  If you are a hard bargainer, you get better 
but fewer deals.  If you are a soft bargainer, you get worse 
but more deals.  Which strategy works better?  Neither! 

H. MSNE cuts the Gordian knot of unlimited second-guessing, third-
guessing, etc.  All of these layers of thought can be reinterpreted as 
a randomizing device. 

I. Solve the French Connection game.  (Note the parallels to the 
Austrians' Sherlock Holmes example). 

VII. Subgame Perfection 
A. Suppose I threaten to fail any student who leaves early from any 

class.  If you believe my threat, you will not leave early, and I will 
never have to impose my threat.  This sounds like a Nash 
equilibrium - since I get what I want at no cost to me, and you 
prefer sitting in class to failing, neither wants to change. 

B. But this sounds like an implausible prediction, because I probably 
would not want to carry out that threat.  There would be a big fight, I 
would have to explain myself to the chairman, the dean, etc.  How 
can a threat I would never carry out change your behavior? 

C. In general terms, this is known as the problem of "out of 
equilibrium" play.  I can optimally choose bizarre behavior in 
situations that I know will never happen.  But knowing what I would 
do in situations that will never happen can affect your actual 
behavior in situations that routinely happen!   

D. This gives rise to the Nash refinement of subgame perfection.  
Subgame perfection, in essence, requires Nash play in every 
subgame of a game. 

E. To check for subgame perfection, you apply backwards induction 
as far as you are able.  Thus in games of perfect and complete 
information, the result you get from backwards induction is always 
subgame perfect.   

F. Standard example: Entry game.  The two PSNE are (In, 
Accommodate) and (Out, Fight).  But only the first is subgame 
perfect. 

G. In games of imperfect information, though, you have to switch from 
strict dominance to Nash. 

VIII. Prisoners' Dilemma 



A. Surely the most analyzed game in economics is the Prisoners' 
Dilemma.  Standard representation: 

  Player 2 
P

la
y
e
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1
 

 Coop Don't 

Coop 5,5 0,6 

Don't 6,0 1,1 

B. Natural solution concept: Strict dominance.  Player 1 is better off 
not cooperating no matter what Player 2 does.  Player 2 is better off 
not cooperating no matter what Player 1 does.  So neither 
cooperates. 

C. The Prisoners' Dilemma has many applications: public goods and 
externalities, collusion, voting, revolution...  Others? 

D. There is a lot of experimental literature on the PD.  The extreme 
prediction is rarely borne out (people will cooperate even when 
defection is strictly dominant).  But people do "leave money on the 
table," and there are a number of standard ways to reduce 
cooperation levels. 

E. Moreover, no experiment that I know of has people play for, say, a 
year.  I would strongly expect large-N, long-term play to closely 
match the game theoretic prediction. 

IX. Coordination Games 
A. Another game with a high profile in both theoretical and policy 

discussions is the Coordination game.  Standard representation: 

  Player 2 

P
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 Left Right 

Left 3,3 0,0 

Right 0,0 5,5 

B. Natural solution concept: PSNE.  If Player 1 plays Left, Player 2 is 
better off playing Left.  If Player 1 plays Right, Player 2 is better off 
playing Right.  And vice versa. 

C. Coordination games underlie the whole path-dependence literature.  
Main idea: It is possible for people to be "locked-in" to Pareto 
inferior equilibria.  (Of course, mere possibility is hardly proof!) 

D. Problems like this naturally lead us to the notion of focal or 
"Schelling" points.  Some coordination equilibrium are in some 
sense more obvious than others.   
1. The classic NYC meeting example. 

E. What would it take to actually get people into the Pareto-inferior 
NE?  Most plausibly, at least a moderate number of players and 
gradual information dispersion.  

F. Experimental evidence?  Not too surprising. 
X. Ultimatum Games 

A. The Ultimatum Game is another game that has received a lot of 
academic attention.  Standard set-up: Player 1 proposes one way 
to divide $10 between himself and Player 2.  Player 2 accepts or 



rejects the division.  If he accepts, they get Player 1's proposal; if 
he rejects, they both get 0. 

  Player 2 
P
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 Accept Reject 

t (10-t),t 0,0 

B. Natural solution concept: Subgame perfection.  Player 2 will accept 
any amount greater than 0, so Player 1 offers $.01 and takes $9.99 
for himself. 

C. Experimentally, no one does this.  Even splits are common, and 
people often reject "ungenerous" offers. 

D. Is this motivated purely by spite?  Parallel Dictator game proves 
otherwise. 

 
 


