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Time Inconsisfency and Related Concepts

by
Daniel Klein and Brendan O'Flaherty

Abstract

We give rigorous game-theoretic meaning to the Stackelberg notions of time
inconsistency and to the idea of commitment being of value (or "sequential
irrationality"). Time inconsistency treats desirable deviations only along the path,

whereas sequential irrationality treats deviations everywhere in the tree.

We establish four relationships: time inconsistency implies sequential
irrationality; sequential irrationality implies and is implied by the failure of
subgame perfect equilibrium; and time consistency implies Nash equilibrium. (In
the last case the restrictions are numerous.) We show also that no other
relationships are valid. Our basic results are easily gleaned from the schema

provided in Figure 1 (which follows typescript page 28).



1. INTRODUCTION

Ever since Kydland & Prescott [1977] showed that rules could be better than
discretion, economists interested in how governments behave have turned to
game theory to try to understand the threats and promises that governments
might make. The subject is commonly referred to as time (or dynamic)
inconsistency, and has become an important part of macroeconomics,
international trade theory, and public finance. This grafting of
noncooperative game theory on to the more policy-oriented fields has generally

been quite productive.

The grafting, however, has not been perfect. There are subtle differences
that have often been overlooked between noncooperative game theory and the
policy-oriented traditions. The purpose of this paper is to show what these
differences are. Our investigation is based on two distinctions: first, the
distinction between the Nash solution concept and the Stackelberg solution
concept; second, the distinction between deviations "along the path" and

deviations "anywhere in the tree."

The Distinction B n Iber.

With a Nash solution concept, everyone is a follower. Nash equilibrium
and its refinements require best strategies given the strategy choices of the
other players. Writers from the noncooperative game theory tradition are

used to the Nash solution concept.



The Stackelberg solution concept recognizes one player as the leader (or, in
our terminology, "ruler"), who pre-emptively chooses a strategy and thereby
influences the strategy choices of the other players. In Stackelberg
equilibrium, the followers are doing as well as possible given the ruler's
strategy, while the ruler is doing as well as possible given the followers'
response function. Of course any Stackelbérg game can be translated into a
Nash counterpart, but much may be lost in the translation.] Writers from
public finance, international trade, and macroeconomics find the Stackelberg

framework natural, with the government acting as ruler.

In Nash games, Nash equilibrium requires best choices only along the

path, whereas subgame perfection requires best choices in all subgames. We
make a similar distinction for Stackelberg games. If, along the path of an
optimal plan, the ruler has no desire to deviate to a new plan, then the
original plan is time consistent. If the ruler would have no such desire
anywhere in the tree, we say the plan is sequentially rational. "Sequential
rationality” -- the Stackelberg analog to subgame perfection -- is a concept that
has not been formally identified in the literature previously. (Our usage of the
term is distinct from what Kreps & Wilson [1982] mean by it.) This notion
appears to be very useful. It is probably implicit in many discussions of public
finance and macroeconomics over the last decade. Sequential irrationality is

nearly synonymous with commitment being of value to the ruler.

Notice that, unlike in the Nash test, when a Stackelberg ruler deviates to a
new plan, subsequent follower choices are revised as well. That is, the

leadership quality of the ruler holds for deviations as well as for the original



announcement.

Depiction of Qur Regults

Using the two distinctions we create the following matrix:

[Please consult Figure 1.]

The arrow pointing from "subgame perfect equilibrium" to "Nash
equilibrium" means that the former implies the latter, which is well known
(Selten [1975]). In this paper we establish the other four arrows shown. The
dashed arrow from "time consistency” to "Nash equilibrium" signifies that
nontrivial restrictions are required for the relationship. (Each of our results
requires a condition on ties.) The paper establishes also that no arrows can be

added to the matrix.

Fershtman [1989] and others have discussed the relationship between

subgame perfect equilibrium and time consistency, but only in special cases.

We do not assume that the ruler is benevolent, as is typically done in the
time inconsistency literature. Ruler benevolence is a special case in our

investigation.

The next section sets out notation. The notation is elaborate because we
need to fit Stackelberg notions into a noncooperative game theory fabric. This
has not been done previously. In doing so, various fine points arise that
require fresh attention. Section 3 presents our results. There is a theorem for
each of the arrows shown in Figure 1. Once precisely stated, the theorems
corresponding to the solid arrows are easily proved. The theorem

corresponding to the dashed arrow requires a lengthy proof, which is in



Appendix 1.

2. NOTATION AND DEFINITIONS

This section provides most, but not all, of the definitions used in the paper.

The exposition of this section is organized in numbered subsections.

(2.1) An S-game is a four-tuple ¥ = (G, i, C, 8).

(2.2) The reference game G is an extensive form game.

(2.3) The ruler. i, and the public. Let I denote the index set of players of G,

where |11=m+1. Playeri is called the ruler, and the set I\{i} of other players
is called the public. For the remainder of this paper we let player 1 be the
ruler (or i=1). The set of nodes assigned to the ruler is R; the set of nodes

assigned to the public is P.

(2.4) Information assumption on G. We make the following three

assumptions about G: (a) every ruler information set is a singleton, and (b) at
every information set in G all previous play by the ruler has been publicly
observed. Assumptions (a) and (b) are rather natural since the ruler
announces her plan in advance of play and she knows how the public will
respond. The assumptions ensure that a subgame originates at every ruler

node.

(2.5) Plans. Let B' denote the set of player i's behavior strategies in G. In




the S-game Y, a subset B of B' is the set of permissable plang for the ruler.
(Subsection (2.14) suggests why the ruler may not have access to the complete
set of behavior strategies, B'.) Think of a plan as an announcement of what

the ruler will do at each of her nodes.

(2.6) Public response function, s. Let S denote the set of behavior strategy
m-tuples that exist in G for the public. Let s(b), the public response function,
denote the unique element of S that is picked out when plan b is announced.
For the remainder of the paper we assume that for every plan b s(b) is a

subgame perfect equilibrium to the m-player game induced by b.

(2.7) Ruler payoffs. U(b, d) denotes the ruler's payoff when she uses plan b

and the public uses behavior strategy m-tuple d € S. For U(b, s(b)) we will

sometimes employ the summary payoff function u(b) := U(b, s(b)).

(2.8) Optimal plans. A plan b* is gptimal iff for all b € B, u(b*) > u(b).

(2.9) Local variations and subgames. For any node v € R, let by denote the

local strategy specified by b at v. Let blb'y denote the ruler's behavior strategy

that results if the local strategy assigned by b to node v € R is changed to b'y

while the local strategies assigned by b to other nodes in R remain

unchanged.

For any node t where a subgame originates let G(t) denote the subgame



whose origin is t. Let b(t) denote the behavior strategy induced by plan b on

G(t), and denote the ruler's payoff function on G(t) as U¢(.), and her summary

payoff function as u¢(.). Let s(b(t)) denote the behavior strategy m-tuple

induced on G(t) by s(b).

(2.10) Sequential rationality. A plan b is gequentially rational iff for every

v € R and every local strategy b'y at v

uy( b(v) ) 2 uy( b() Ib'y). (1)
To understand this definition think about applying (1) backward through the
game. If a plan is not sequentially rational, it is sequentially irrational.
Consult Figures 2 ("If you scratch my back I'll scratch your back") and
Figure 3 ("Scratch my back or else I'll break your back") for simple examples
of sequentially irrational plans.

[Please consult Figures 2 & 3.]

Using the idea of sequential irrationality and plan optimality, we get a
straightforward and natural standard for whether the ruler values
commitment conveyance. Without commitment conveyance the ruler is
restricted to sequentially rational plans. Therefore, were the ruler to have
commitment conveyance and were all her optimal plans to be sequentially
irrational, then we say she benefits from having commitment conveyance.
We call this property "commitment dominance." Thus, when all optimal
plans are sequentially irrational, the ruler faces commitment dominance.
The commitment interpretation is apparent in Figures 2 and 3. In those
Figures, were the ruler to lack commitment conveyance, her promises and

threats would not be credited, and her back would not be scratched.



(2.11) Time consistency. The concatenated behavior strategy for the ruler

k(b, v, b') is the behavior strategy that results from behavior strategy b if the

behavior strategy induced by b on G(v), v € R, is changed to b'(v) while the local

strategies assigned by b to other nodes in R remain unchanged. Similarly, the

concatenated behavior strategy m-tuple for the public y(d, v, d') is the behavior

strategy m-tuple that results from behavior strategy m-tuple d if the behavior

strategy m-tuple induced by d on G(v), v ¢ R, is changed to d'(v) while the local

strategies assigned by d to other vertices in P remain unchanged.

A plan b is time incongistent iff there exists a v € R and some sequentially

rational plan b' such that

U( x(b, v, b), Y sb), v, s®) ) ) > u(b). 2)

A plan that is not time inconsistent is called time consistent .2 Consult Figure

2 for a simple example of a time inconsistent plan.

Our definition of time inconsistency is the natural and faithful
game-theoretic representation of what that term has always meant. The only
distinctive feature of our definition is that, were the ruler able to fool the public
and deviate, at a reached node the ruler can reannounce only a sequentially
rational plan. Alternatively one may wish to permit her to reannounce
convincingly any plan, and to fool the public repeatedly. The issue of the

proper choice set at the point of deviation has scarcely arisen in the time



inconsistency literature because in those models the government typically
reaches a point of time inconsistency at final moves, so sequential rationality
would be its preferred deviation even if it had a wider choice. Our decision to
restrict reannouncements to sequentially rational plans conforms to the
proverb: "Fool me once, shame on you; fool me twice, shame on me." Once
fooled, the public will not believe anything but a sequentially rational plan,
which will truly stick for the remainder of the game. We are not wedded to

this formulation; other conventions on this issue are worthy of exploration.

(2.12) Historical independence. This is a condition treating ties in citizen

payoffs, needed for results concerning Nash and subgame perfect

equilibrium. A public response function s satisfies historical independence iff

whenever b and b' are two plans that differ on no node that succeeds ve R,

then at every node w € P that succeeds v the local strategy induced by s(b) is the

same as the local strategy induced by s(b'). Expressed again, historical

independence is satisfied iff the following is true for any node v €¢ R and any

pair of plans b and b": If b(v) = b'(v) I by, then s(b(v)) = s(b'(V)).

Intuitively, suppose we were to intrude on an S-game at some citizen node
w, and that plans b and b' are the same in G(w) (that is, b(w)=b'(w)). Suppose
we got on a soapbox at w and said to the citizens active in G(w), "Plans band b’
both imply the same thing from here on. Is anyone of you going to base your
response to this on whether b or b' is being used elsewhere?" Historical

independence requires a universal answer of no. Because of the local best



reply restriction already placed on s, historical independence can matter only

when some citizen faces a tie.

Figure 4 provides an example of a violation of historical independence.
Notice that the public can "threaten” the ruler by choosing an appropriate
response rule. Considering the second response rule described in Figure 4,
the public response of (B) to (R) violates the spirit, if not the letter, of the
Stackelberg tradition. (Nalebuff and Shubik [1988] demonstrate the point that
ties give players the kind of freedom to make threats and promises that we
intuitively associate with the ability to make commitments.)

[Please consult Figure 4.]

(2.13) SR-equivalence. This is a condition treating ties in ruler payoffs.
An S-game Y satisfies SR-equivalence iff whenever b and b' are sequentially

rational plans

uy(b(v)) = uy(b'(v))

for all ve R. Not all S-games satisfy SR-equivalence; the game in Figure 5
provides an example.? SR-equivalence can fail only when the ruler faces a tie
in payoffs, but ties need not cause failure of SR-equivalence.

[Please consult Figure 5.]

Notice that if the ruler moves only once (that is, every ruler node is without
predecessor or successor ruler nodes), SR-equivalence is trivially satisfied for
any public response function s that satisfies the local best reply restriction.
S-games with this characteristic are the games most heavily studied in the

time inconsistency literature on monetary and public economics (e.g.,
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Kydland & Prescott [1977]; Fischer [1980]).

(2.14) Policy formation, C. In the Kydland & Prescott (1977) Phillips curve
model, a government commitment to inflation policy cannot take the form of
any reaction function (with domain being the history of citizen employment
decisions). In the time inconsistency literature, the government is restricted
to plans that take the form of a single magnitude that applies uniformly
across all possible citizen histories standing at the government's "time to act.”
Hence the literature makes frequent use of the term "open loop" in describing

the "rules," or commitment, regime.

Item C -- "policy formation" -- addresses such restrictions on the set of
plans the ruler can choose from. We shall not exposit policy formation in this
paper because it does not play a role except in Theorem 4. Let us say only that
if there are no policy formation restrictions on the ruler's set of eligible plans
(that is, B = B'), we say that the S-game has "perfect policy formation." Perfect
policy formation is necessary in Theorem 4. A fuller discussion of policy
formation is provided in Klein & O'Flaherty (1992), where it plays a central

role; for fuller interpretation, see Klein & O'Flaherty (forthcoming).

3. RESULTS ABOUT PLANS

Although it is optimal plans that rulers care about, it is desirable to state

results as generally as possible. Our results are not confined to optimal

plans.

Theorem 1 confirms our sensibility that time inconsistency precludes



11
sequential rationality, or, in other words, that time inconsistency depends on

commitment conveyance.

Theorem 1: Let 3 satisfy SR-equivalence. If a plan b is time inconsistent,

then it is sequentially irrational.

Proof: Since b is time inconsistent, there is some v € R and some

sequentially rational plan b’ such that

U( x(b,v,b), Y sib),v,s®d)) ) > U(b, s(b))

Except in G(v) the play of the LHS is identical to the play of the RHS. The

inequality results from differences in G(v):

Uy(b'®), s(bw) ) ) > Uy(b(v), (b)) )

Since b' is sequentially rational, by SR-equivalence b must not be sequentially

rational. Hence b is sequentially irrational.

AR

SR-equivalence is a necessary restriction on the claim that every

inconsistent plan is sequentially irrational, as shown by plan b in Figure 5.

How about the converse of Theorem 1? That is, does time consistency

imply sequential rationality? The answer is no. Figure 3 shows an optimal
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plan that is time consistent and sequentially irrational.

Theorems 2 through 4 relate plén properties to properties of equilibria in
the reference game, linking Stackelberg concepts to familiar concepts in
noncooperative game theory. More specifically, Theorems 2 and 3 confirm
our intuition about sequential irrationality (or commitment dominance) and

the failure of subgame perfect equilibrium.
Theorem 2: Let J satisfy historical independence and let b be some plan.

If b is sequentially irrational, then (b, s(b)) is not a subgame perfect

equilibrium of G.

Proof: Suppose b is sequentially irrational. Then there is some v &€ R and

some b'y such that

Uy(b(W) by, s(b®)Iby) ) > Uy( b(v), s(b)) ). 3)

By historical independence, s(b(v) Ib'y) = s(b(v). Substituting into the LHS of (3)

yields:

Uy( bW Ib'y, sbw) ) > Uy(b(v), sb) ) 4)

Hence b(v) is not a best response to s(b(v)) in G(v); hence (b, s(b)) is not a

subgame perfect equilibrium of G.

1 2 X
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Theorem 3: Let 3 satisfy historical independence and let b be some plan.
If (b, s(b)) is not a subgame perfect equilibrium of G, then b is sequentially

irrational.

Proof: We have assumed that s(b) is a subgame perfect equilibrium in the

citizen game induced by b. Thus if (b, s(b)) is not a subgame perfect

equilibrium of G there must be some v € R and some b'y such that

Uy( () Ib'y, s(bw)) ) > Uy( b(v), sb(v) ). (5)

By historical independence , s(b(v)) = s(b(v)Ib'y). Substituting into the LHS of

(5) we get,

Uy b(W) Ib'y, s(bw1by) ) > Uy b(v), sbw) ).

Hence b is sequentially irrational.

‘e

Is historical independence necessary for Theorems 2 and 3? The game in
Figure 4 and its accompanying discussion show that it is.

From Theorems 1 and 2 we have,



14
Corollary 1: Let X satisfy historical independence and SR-equivalence. If
a plan b is time inconsistent, then (b, s(b)) is not a subgame perfect

equilibrium of G.

Fershtman [1989] obtained a similar result, but in the context of Markov

games, rather than in the context of S-games.

Even with both historical independence and SR-equivalence, neither the
converse of Theorem 1 (nor the converse of Corollary 1) holds. As Fershtman
argues, time consistency requires that the ruler's plan choose local best
replies only along the path of play, while perfection and sequential rationality
require that local best replies be chosen at every node. This point is also made
by McTaggart & Salant [1990] and by Guiso and Terlizzese [1990]. Not
surprisingly, Schelling [1960, 177] first exposited the basic insight: "[A]
promise [think time inconsistency] is different from a threat [think subgame
imperfection]. The difference is that a promise is costly when it succeeds, and
a threat is costly when it fails. A successful threat is one that is not carried

out [whereas a successful (and genuine) promise is carried out]."

Now, how about time consistency and Nash equilibrium? Figure 2 shows a
time inconsistent plan b with (b, s(b)) not a Nash equilibrium. Figure 3 shows
a time consistent plan b with (b, s(b)) a Nash (but not subgame perfect)
equilibrium. These figures suggest a relationship between time consistency
and Nash equilibrium. Theorem 4 will establish a relationship, but first more

refinement is necessary.
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Consider Figure 6. Optimal plan b, shown by the arrows, is time
consistent, but (b, s(b)) is not a Nash equilibrium. Given b and s(b), the move
at k is strategically irrelevant, since no matter what is specified at k, k will not
be reached.

[Figure 6 here.]

Formally, for a given S-game with perfect policy formation and a plan b,

the move at some v € R is gtrategically irrelevant under b iff for any local

strategy b'y at v:

p(v, (blby, sbIby) ) = 0,

where p(v, (B)) denotes the realization probability of node v when the players

use the behavioral strategy (m+1)-tuple . Now, if a move is strategically
irrelevant under some plan b, a reasonable condition on b is that the local

behavior strategy at that move be locally best. Formally, a plan b is

nonidiosyncratic iff for every v € R such that v is strategically irrelevant under

b, and for every b'y

Uy( b), (b)) ) = Uy( b(v)ib'y, s Ibly) ).

Notice that in Figure 6 b fails this condition at node k and therefore is
idiosyncratic. Nonidiosyncrasy is one condition we will place on b in Theorem

4.



Figure 7 shows that we need yet another condition for our relationship
between time consistency and Nash equilibrium. Plan b is shown by the
arrows and specifies 0.5 probability on each choice at x. For time
inconsistency we permit the ruler to revert to sequentially rational plans only,
and at x the ruler would not want to revert to the sequentially rational plan.
Thus b is time consistent, as well as nonidiosyncratic, yet (b, s(b)) is not a
Nash equilibrium. This result is avoided if we require also that b be a pure
strategy, which is our final condition for Theorem 4.

[Figure 7 here.]

Theorem 4: Let 3 satisfy historical independence (and perfect policy
formation), and let b be some plan. If b is time consistent, nonidiosyncratic,

and pure, then (b,s(b)) is a Nash equilibrium of G.

Proof: The proofis in Appendix 1.

Theorem 4 says that with several restrictions time consistency implies
Nash equilibrium. The proof shows primarily that b must be a best response
to s(b). Consider the following: Suppose b were not a best response to s(b)
whereas b' were. The differences in local strategies between b and b' cannot
be limited to a single vertex because then b would be time inconsistent. But
necessary changes in local strategies of b' cannot be more than one since,
while the first change opens up a new direction, it leads to nodes that are
strategically irrelevant under b, so the b moves down that road are already

best. Thus no superior b' can exist, and b must be a best response to s(b). (A

16



simple example showing the necessity of the perfect policy formation

condition is available from the authors.)

Is the converse true? That is, assuming whatever minor restrictions may
be necessary, if (b, s(b)) is a Nash equilibrium, must b be time consistent? The
answer is no, as shown by Figure 8.

[Figure 8 here.]

4, CONCLUDING COMMENTS

Borrowing machinery from the extensive form games, we have given time
consistency rigorous game-theoretic expression. We establish a relationship
between time consistency and Nash equilibrium, a relationship between time
inconsistency and sequential irrationality, and converse relationships
between sequential rationality and subgame perfect equilibrium. Our basic

results are easily gleaned from the schema in Figure 1.

The time inconsistency literature underscores two points: first, that
commitments can help the ruler; second, that the ruler may get to point at
which she will want to change plans. Sometimes in print and often in casual
discussions these two ideas have been used interchangeably. Perhaps the
frequency of this error can be explained in the following manner: An
"open-loop" programing approach to economic problems is essentially a
Stackelberg approach. When an optimal plan is time consistent there is no
way of knowing whether the plan outperforms sequentially rational plans (or,
equivalently, whether the ability to convey a commitment is valuable) except by

making an explicit comparison. When the optimal plan is time inconsistent,

17
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however, in all but a rather unimportant fringe of cases, the investigator
knows that the plan violates sequential rationality and therefore that
commitment is valuable. That is why need for commitment conveyance has

been closely -- sometimes too closely -- associated with time inconsistency.
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Appendix 1: Proof of Theorem 4.

To prove Theorem 4 we will use Lemma 1.

Lemma 1: Let b be some plan. Let d be any perfect best response to s(b), that is,

for every v € R and for every local strategy d'y at v,

Uv(d(v), s(b@)) > Uv( d 1d", sbw) ).

Let g be the perfect best response to s(b) that results from replacing the local
strategy of d with local strategy of b at each v where

Uy(d®) by, stb@) ) = Uy( d(v), sbw) ). 6
LetY = {veR: Uy gv), stow)) > Uyl gw) by, sba)) }. (7)
LetX = {veR: pv, @ s®) > 0). ®)

If X NY is empty, then b is a best response to s(b).

Proof: Suppose XNY is empty. If X is empty, citizens begin the game and
s(b) terminates the play before the ruler even makes a move. Clearly any
strategy by the ruler is a best response to s(b).

For X nonempty, consider each v € X such that v has no predecessors in R.

Each such v is not in Y by supposition, so (6) must be satisfied there and the

local strategy from b is specified by g. Consider the "next level" of v € X (that
is, successor ruler vertices in X such that no other ruler vertices come
between). Again, Y is not satisfied there so the local strategy from b is



specified by g at each such ruler vertex. Continuing through the game by
considering successive levels of ruler vertices in X, we see that the path of (g,
s(b)) is identical to that of (b, s(b)). Therefore

Ulg, s(b)) = U(b, s(b)).

Since g is a best response to s(b), b must also be a best response to s(b),

244

Theorem 4: Let X satisfy historical independence and perfect policy
formation, and let b be some plan. If b is time consistent, nonidiosyncratic,
and pure, then (b, s(b)) is a Nash equilibrium of G.

Proof: By the supposition that S(b) assigns local best replies, each citizen is
playing a best response to the stategies of all the other players. We need to
show that b is a best response to s(b).

Let g, Y, and X be as defined in Lemma 1. We proceed to show that XY is
empty.

Let W be the origin of G (that is, W has no predecessors in G). Letting u
represent any vertex/terminal node in G, let C(W, u) be the curve connecting
W and u. A strategy is said to specify a deviation from C(W, u) if it places zero
probability on at least one move along C(W, u).

Divide R (the set of ruler vertices) into three exhaustive disjoint sets:

Ry = {veR: p(v, (b,stk) > 0}
Ro = {veR: b specifies at least one deviation from C(W, v)}
Rg := {veR: b does not specify a deviation from C(W, v) but s(b) does}

Where u and n are two vertices in G, the notation u < n means that u



precedes n. From Y we can generate sets Y; (i=1,2,...,2z) of ordered vertices:
Y; = {v],V2, Vi EY: V] < V9 < ... < Vi }

The Yj's certainly may have a nonempty intersection, although a common

ruler vertex may have different tags depending on the i.

Claim(@): No v, is in Rj. For any Yj, consider the last vertex in the set, v;.

For convenience we will drop the subscript i on on v;. Since no element of Y

succeeds v,

Uy V@), 80ve ) ) = Uy b(v) | gy s0ve) ), 9)
and that

Uyo( (v, sbvy) ) ) = Uy 8vy) 1byg, sbive) ) ). (10)

By historical independence,

s(b(vgy) = s( b(vy) | gye)- 11)

Substitute the RHS of (11) into the RHS of (9) and then substitute the result
into the LHS of (7). Substitute the LHS of (10) into the RHS of (7). Thus,

Uy bV | gyas 8( b lgve) ) > Uyel bvey), sbive) ). 12)

For b(vg) | gy, » sSequential rationality holds at ruler vertices succeeding v,
since v, has no successors in Y, and historical independence assures that
sequential rationality holds at vg,. So b(vy) | gy, is sequentially rational. But
since b is time consistent, it must be that v, is not in Ry for otherwise b would

be inconsistent at v,. This argument holds for any last Y node, so no v, is in



R;.

Claim(ii): No v, is in Ro, Again since v, is last, (12) holds and therefore b is
sequentially irrational at vg,. Since we assume perfect policy formation and
that b is nonidiosyncratic, v must then be strategically relevant. No element

of Ry is strategically relevant, so no last Y node v, is in Rg.

Claim(i) and Claim(ii) establish that any last Y node v, must be in R3. We

now proceed by induction. Consider any r € R such that the only elements of Y

to succeed it are in Rg.

Claim(ii); No ris in Ry, By supposition b, is a pure strategy. Let m be the
citizen vertex by leads to. Since r is in Y, g, must place weight on different

(and better) moves at r. g, may be pure or it may distribute weight among
equally good moves at r. At any rate, let ¢’ be a generic element of the set of
moves receiving positive weight from g;, and let n be the citizen vertex c¢' leads

to. For any vertex t, let NRS(t) be the set of nearest ruler successor vertices of t;
excepting its endpoints, the curve connecting t and any element of NRS(t)

contains no ruler vertices.4

We know a subgame originates at citizen node n since ruler actions are
publicly observed. All the ruler vertices in G(n) are strategically irrelevant
under b, so by nonidiosycrasy, b is sequentially rational in G(n). Let b" be any

sequentially rational plan, let {b(NRS(n))} be the set of plans induced by b on
the subgames originating with an element of NRS(n), and let { b"(

NRS(r)\NRS(n)) } be the set of plans induced by b" on the subgames originating
with an element of NRS(r) excepting the subgames originating with an
element of NRS(n). Now we can construct a new plan:



h(r) := (g, {b(NRS(n))}, { b"( NRS)\NRS(n))} )

Description of h(r): At r, h(r) specifies gp; on subgames to which g, leads, h(r)
specifies b; on subgames ensuing from r to which g, does not lead, h(r)

specifies b". Hence

U (h@@), s(bm ) ) = Ug( blr)l gy, stbx) ) ) 13)
By historical independence, { sC h(NRSm) ) )} = { s( b( NRSm))) }, which

implies
Ur(h(), s®b) ) ) = U h(r), s(h@) ) (14)
Since the only elements of Y to succeed r are in Rg,

U (b))l gy, s(b()) ) = U glr), sbx)) ) (15)

Substitute the RHS of (14) into the LHS of (13) and the RHS of (15) into the RHS
of (13):

Uy(h(r), s(h)) ) = U glr), s(b)) ) (16)

Now, again since the only elements of Y to succeed r are in Rg,

U g) by, s( b)) ) = Up(b(x), s( b)) ) a7
Since ris an element of Y,
U g(r), s(b@®) ) ) > UL gr) by, s(bx))) (18)

Substitute the LHS of (16) into the LHS of (18), and the RHS of (17) into the RHS
of (18):



U(h(r), s(h@®)) > U b(r), s(b@))) 19

Now, b(r) is sequentially rational at every ruler vertex in G(r) except possibly
r. Let

f*. := argmax over all qp of Up( h(r)lqp, s(h@®) ),

and let
flr) = h(r)If*.

f{r) is sequentially rational.

Since by is one option in the maximization problem defining f*,., (and since

s(fir)) = s(h(r)) by historical independence),

Uy(Rr), s(fir))) = U h(r), s(h(x))) (20)
So by (19) and (20),

U fr), s(fir)) ) > Up( b(r), s(b(r)) )

So if the players, following (b, s(b)), were to arrive at r, there the ruler would
want to switch to the sequentially rational plan f{r). Since b is time consistent,

there must be zero probability of (b, s(b)) reaching r, or r is not in Rj.

Claim(@v): r is not in Ro. As in Claim(iii), since the only elements of Y to
succeed r are in Rg, equations (15) and (17) hold, and since r is in Y inequality

(18) holds. By historical independence s(b(r)) = s(b(r) | gr), so by substituting
into the LHS of (15):

Up(b(r)l gy, s(b@)igy) ) = Upl glr), sbx))) (21)

Substitute the LHS of (21) into the LHS of (18), and substitute the RHS of (17)
into the RHS of (18):

24



Ur( b(r) I gp, s(br)1gy) ) > U blr), s(bx)) ) (22)

Thus r must not be in Ro, for otherwise r would be strategically irrelevant

under b and (22) would contradict nonidiosyncrasy.

Review. Claim(i) showed that no last Y vertices are in R{, and Claim(ii)
showed that no last Y vertices are in Rg. Where ris a Y vertex such that the
only Y vertices to succeed it are in Rg, Claim(iii) showed that r is not in Ry,

and Claim(iv) showed that r is not in Rg. Thus by induction we conclude that

all elements of Y are in R3. Since no element of R3 is in X, YNX is empty, and

by Lemma 1 b is a best response to s(b). Hence (b, s(b)) is a Nash equilibrium.

LA & 4



NOTES

1 Rasmusen, in his recent game theory text (1989, p82), notes that in an
appropriately specified extensive game Stackelberg duopoly is a Nash
equilibrium, but then suggests another equilibrium concept, much in line with
this paper, to distinguish the spirit of Stackelberg duopoly from the spirit of Nash
equilibrium: "An alternative definition is that a Stackelberg equilbrium is a
strategy combination in which players select strategies in a given order [the ruler
announces a plan!], and in which each player's strategy is a best response to the
fixed strategies [re: plans] of the players preceding him and to the yet to be chosen
strategies of players succeeding him, i.e., a situation in which players precommit
to strategies in a given order. Such an equilibrium would not generally be either
Nash or perfect."

2An note of interpretation: Suppose b is time inconsistent at v and by, is a mixed
strategy. If the ruler reverts to an SR plan b’ at v, and b’y specifies an action
which received positive probability under by, how would the citizens know that the

ruler changed her plan? We must assume that the citizens are fully informed of
the new plan; they see the new roulette wheel that is spun at v, as well as the
wheels to be spun at successor ruler nodes. The authors are grateful to Stergios
Skaperdas for pointing this out.

3 We are indebted to an anonymous referee for this example.

4 Formally, NRS(t) := {v € R: t < v and there does not exist any v' ¢ R such that t <

v' < vh
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Figure 1: Summary of Results

No incentive to deviate...

Along the Path Anywhere in Tree
( —) subgame perfect
Nash Nash equilibrium eguﬂibgum

' Y

|

Stackelberg time consistency sequential rationality
-

The arrow in parantheses indicates a relationship that is well known.
This paper establishes the other four arrows. The dashed arrow signifies
that the relationship is true only with nontrivial restrictions.



Figure 2

"If you scratch my back I'll scratch your back."

don't scratch scratch 1's

1's back

payoff to 1 (ruler) 1
off to 2 (citizen) 3
pay (citizen) t scratch scratch 2's

back

b and s(b) are shown by the arrows; b specifies (don't
scratch) with .25 probability and (scratch) with .75
probability. b is optimal and sequentially irrational, and it
is time inconsistent because atv 1 would like to switch to
sequentially rational play (don't scratch). (b, s(b)) is not
a Nash equilibrium.



Figure 3

"Scratch my back or else I'll break your back."

don't scratch
1's back

scratch 1's
back

payoff to 1 (ruler) 2
payoff to 2 (citizen) 1 break 2's don't break
back 2's back

b and s(b) are shown by the arrows. b is optimal,
sequentially irrational, and time consistent. (b, s(b)) is a
Nash equilibrium.



Figure 4

payoff to 1 (ruler) 3
payoff to 2 (citizen) 3

Violations of historical independence: Suppose the
citizen's response is (B) whenever the ruler's plan places

positive probability on (L), and (A) otherwise. Letting b =
(L), (b, s(b)), that is, (L,B), is a subgame perfect
equilibrium, but b is sequentially irrational.

Suppose the citizen's response is (B) whenever the ruler's
plan places positive probability on (R), and (A) otherwise.
Letting b = (L), b is sequentially rational, but (b, s(b)), that

1s, (L,A), is not a subgame perfect equilibrium.

These public response rules violate historical
independence and show that historical independence is
necessary to Theorems 2 and 3.



Figure 5

payoffto 1 (ruler) O
payoff to 2 (citizen) 3

Violation of SR-equivalence: b and s(b) are shown by the
single arrows. b' and s(b’) are shown by the double arrows.
Both b and b' are sequentially rational, yet uv(b(v)) =1 <2 =u,(b'V)),
violating SR-equivalence. b is time inconsistent since at v the ruler
would like to switch to the sequentially rational plan b'. b is also
optimal.



Figure 6

payoff to 1 (ruler) 2
payoff to 2 (citizen)

b and s(b) are shown by the arrows. b is optimal and time
consistent. (b, s(b)) is not a Nash equilibrium. Node k is
strategically irrelevant under b. Since b is sequentially
irrational at a strategically irrelevant node b is idiosyncratic.



Figure7

payoff to 1 (ruler) 2
payoff to 2 (citizen) 2.1 0 0 5

b and s(b) are shown by the arrows; at x b specifies each
action with .5 probability. b is optimal, time consistent and
nonidiosyncratic, yet (b, s(b)) is not a Nash equilibrium.
This example shows that the pure strategy condition in
Theorem 4 is necessary. (The point could have been
illustrated by the simpler game that results if you delete the
first move. The first move is included to show that
imposing that b be optimal, rather than that b be pure, will
not make Theorem 4 work.)



Figure 8

1
payofftol O
payoffto2 O
payoffto3 2
2
2
0
1
1
3
3
3
1
1
0

b and s(b) are shown by the arrows. b is optimal,
nonidiosyncratic, and time inconsistent. (b, s(b)) is a Nash
equilibrium.
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